Rough Geometry and Its Applications in Character Recognition
نویسندگان
چکیده
The absolutely abstract and accurate geometric elements defined in Euclidean geometry always have lengths or sizes in reality. While the figures in the real world should be viewed as the approximate descriptions of traditional geometric elements at the rougher granular level. How can we generate and recognize the geometric features of the configurations in the novel space? Motivated by this question, rough geometry is proposed as the result of applying the rough set theory to the traditional geometry. In the new theory, the geometric configuration can be constructed by its upper approximation at different levels of granularity and the properties of the rough geometric elements should offer us a new perspective to observe the figures. In this paper, we focus on the foundation of the theory and try to observe the topologic features of the approximate configuration at multiple granular levels in rough space. Then we also attempt to apply the research results to the problems in different areas for novel solutions, such as the applications of rough geometry in the traditional geometric problem (the question whether there exists a convex shape with two distinct equichordal points) and the recognition work with principal curves. Finally, we will describe the questions induced from our exploratory research and discuss the future work.
منابع مشابه
Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملA Handwritten Character Recognition System Using Directional Element Feature and Asymmetric Mahalanobis Distance
This paper presents a precise system for handwritten Chinese and Japanese character recognition. Before extracting directional element feature (DEF) from each character image, transformation based on partial inclination detection (TPID) is used to reduce undesired effects of degraded images. In the recognition process, city block distance with deviation (CBDD) and asymmetric Mahalanobis distanc...
متن کاملطراحی و پیادهسازی سامانۀ بیدرنگ آشکارسازی و شناسایی پلاک خودرو در تصاویر ویدئویی
An automatic Number Plate Recognition (ANPR) is a popular topic in the field of image processing and is considered from different aspects, since early 90s. There are many challenges in this field, including; fast moving vehicles, different viewing angles and different distances from camera, complex and unpredictable backgrounds, poor quality images, existence of multiple plates in the scene, va...
متن کاملParleda: a Library for Parallel Processing in Computational Geometry Applications
ParLeda is a software library that provides the basic primitives needed for parallel implementation of computational geometry applications. It can also be used in implementing a parallel application that uses geometric data structures. The parallel model that we use is based on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced here. ParLeda uses two main lib...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trans. Rough Sets
دوره 10 شماره
صفحات -
تاریخ انتشار 2009